Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
|
elpm2r |
⊢ ( ( ( ℝ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℝ ↑pm ℝ ) ) |
3 |
1 1 2
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℝ ↑pm ℝ ) ) |
4 |
|
ello1 |
⊢ ( 𝐹 ∈ ≤𝑂(1) ↔ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
5 |
4
|
baib |
⊢ ( 𝐹 ∈ ( ℝ ↑pm ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
6 |
3 5
|
syl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) |
7 |
|
elin |
⊢ ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ) |
8 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
9 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → dom 𝐹 = 𝐴 ) |
10 |
9
|
eleq2d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
11 |
10
|
anbi1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ) ) |
12 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
13 |
12
|
sselda |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
14 |
|
simpllr |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
15 |
|
elicopnf |
⊢ ( 𝑥 ∈ ℝ → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) ) ) |
17 |
13 16
|
mpbirand |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑥 [,) +∞ ) ↔ 𝑥 ≤ 𝑦 ) ) |
18 |
17
|
pm5.32da |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
19 |
11 18
|
bitrd |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
20 |
7 19
|
syl5bb |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ) |
21 |
20
|
imbi1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
22 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
23 |
21 22
|
bitrdi |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) ) |
24 |
23
|
ralbidv2 |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
25 |
24
|
rexbidva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
26 |
25
|
rexbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
27 |
6 26
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( 𝐹 ‘ 𝑦 ) ≤ 𝑚 ) ) ) |