Metamath Proof Explorer


Theorem ello1d

Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
ello1d.3 ( 𝜑𝐶 ∈ ℝ )
ello1d.4 ( 𝜑𝑀 ∈ ℝ )
ello1d.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝐶𝑥 ) ) → 𝐵𝑀 )
Assertion ello1d ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )

Proof

Step Hyp Ref Expression
1 ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
2 ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 ello1d.3 ( 𝜑𝐶 ∈ ℝ )
4 ello1d.4 ( 𝜑𝑀 ∈ ℝ )
5 ello1d.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝐶𝑥 ) ) → 𝐵𝑀 )
6 5 expr ( ( 𝜑𝑥𝐴 ) → ( 𝐶𝑥𝐵𝑀 ) )
7 6 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝐶𝑥𝐵𝑀 ) )
8 breq1 ( 𝑦 = 𝐶 → ( 𝑦𝑥𝐶𝑥 ) )
9 8 imbi1d ( 𝑦 = 𝐶 → ( ( 𝑦𝑥𝐵𝑚 ) ↔ ( 𝐶𝑥𝐵𝑚 ) ) )
10 9 ralbidv ( 𝑦 = 𝐶 → ( ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝐶𝑥𝐵𝑚 ) ) )
11 breq2 ( 𝑚 = 𝑀 → ( 𝐵𝑚𝐵𝑀 ) )
12 11 imbi2d ( 𝑚 = 𝑀 → ( ( 𝐶𝑥𝐵𝑚 ) ↔ ( 𝐶𝑥𝐵𝑀 ) ) )
13 12 ralbidv ( 𝑚 = 𝑀 → ( ∀ 𝑥𝐴 ( 𝐶𝑥𝐵𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝐶𝑥𝐵𝑀 ) ) )
14 10 13 rspc2ev ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐴 ( 𝐶𝑥𝐵𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) )
15 3 4 7 14 syl3anc ( 𝜑 → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) )
16 1 2 ello1mpt ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
17 15 16 mpbird ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )