Step |
Hyp |
Ref |
Expression |
1 |
|
ello1mpt.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ello1mpt.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
ello1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 |
|
ello1d.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
5 |
|
ello1d.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → 𝐵 ≤ 𝑀 ) |
6 |
5
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) |
8 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥 ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑚 = 𝑀 → ( 𝐵 ≤ 𝑚 ↔ 𝐵 ≤ 𝑀 ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) ) |
14 |
10 13
|
rspc2ev |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → 𝐵 ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) |
15 |
3 4 7 14
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) |
16 |
1 2
|
ello1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
17 |
15 16
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |