Step |
Hyp |
Ref |
Expression |
1 |
|
ello1mpt.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ello1mpt.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
4 |
|
ello12 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) ) |
5 |
3 1 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ≤ 𝑧 |
7 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
10 |
7 8 9
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 |
11 |
6 10
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) |
12 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) |
13 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) ) |
17 |
11 12 16
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
19 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
20 |
19
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
21 |
18 2 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
22 |
21
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚 ) ) |
23 |
22
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
24 |
23
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
25 |
17 24
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
26 |
25
|
2rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
27 |
5 26
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |