Metamath Proof Explorer


Theorem ello1mpt

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion ello1mpt ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )

Proof

Step Hyp Ref Expression
1 ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
2 ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 2 fmpttd ( 𝜑 → ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ )
4 ello12 ( ( ( 𝑥𝐴𝐵 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) )
5 3 1 4 syl2anc ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) )
6 nfv 𝑥 𝑦𝑧
7 nffvmpt1 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 )
8 nfcv 𝑥
9 nfcv 𝑥 𝑚
10 7 8 9 nfbr 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚
11 6 10 nfim 𝑥 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 )
12 nfv 𝑧 ( 𝑦𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 )
13 breq2 ( 𝑧 = 𝑥 → ( 𝑦𝑧𝑦𝑥 ) )
14 fveq2 ( 𝑧 = 𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) )
15 14 breq1d ( 𝑧 = 𝑥 → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ↔ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) )
16 13 15 imbi12d ( 𝑧 = 𝑥 → ( ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ( 𝑦𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) )
17 11 12 16 cbvralw ( ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) )
18 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
19 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
20 19 fvmpt2 ( ( 𝑥𝐴𝐵 ∈ ℝ ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
21 18 2 20 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
22 21 breq1d ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚𝐵𝑚 ) )
23 22 imbi2d ( ( 𝜑𝑥𝐴 ) → ( ( 𝑦𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ( 𝑦𝑥𝐵𝑚 ) ) )
24 23 ralbidva ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑦𝑥 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
25 17 24 syl5bb ( 𝜑 → ( ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
26 25 2rexbidv ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧𝐴 ( 𝑦𝑧 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
27 5 26 bitrd ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )