Metamath Proof Explorer


Theorem ello1mpt2

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
ello1d.3 ( 𝜑𝐶 ∈ ℝ )
Assertion ello1mpt2 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )

Proof

Step Hyp Ref Expression
1 ello1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
2 ello1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 ello1d.3 ( 𝜑𝐶 ∈ ℝ )
4 1 2 ello1mpt ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
5 rexico ( ( 𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ ) → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
6 1 3 5 syl2anc ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
7 6 rexbidv ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
8 rexcom ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) )
9 rexcom ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) )
10 7 8 9 3bitr4g ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )
11 4 10 bitr4d ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥𝐵𝑚 ) ) )