| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ello1mpt.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 2 |  | ello1mpt.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ello1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 | 1 2 | ello1mpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 5 |  | rexico | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℝ ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 8 |  | rexcom | ⊢ ( ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) | 
						
							| 9 |  | rexcom | ⊢ ( ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑦  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) | 
						
							| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 11 | 4 10 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑦  ∈  ( 𝐶 [,) +∞ ) ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑦  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) |