Step |
Hyp |
Ref |
Expression |
1 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
2 |
|
ffn |
⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) |
3 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) ) |
4 |
1 2 3
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) |
5 |
|
pire |
⊢ π ∈ ℝ |
6 |
5
|
renegcli |
⊢ - π ∈ ℝ |
7 |
6
|
rexri |
⊢ - π ∈ ℝ* |
8 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
9 |
7 5 8
|
mp2an |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |
10 |
|
3anass |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
11 |
9 10
|
bitri |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
12 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
13 |
12
|
biantrurd |
⊢ ( 𝐴 ∈ ℂ → ( ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) ) |
14 |
11 13
|
bitr4id |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
15 |
14
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
16 |
4 15
|
bitri |
⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
17 |
|
logrn |
⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) |
18 |
17
|
eleq2i |
⊢ ( 𝐴 ∈ ran log ↔ 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ) |
19 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
20 |
16 18 19
|
3bitr4i |
⊢ ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |