Metamath Proof Explorer


Theorem ellpi

Description: Elementhood in a left principal ideal in terms of the "divides" relation. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses ellpi.b 𝐵 = ( Base ‘ 𝑅 )
ellpi.k 𝐾 = ( RSpan ‘ 𝑅 )
ellpi.d = ( ∥r𝑅 )
ellpi.r ( 𝜑𝑅 ∈ Ring )
ellpi.x ( 𝜑𝑋𝐵 )
Assertion ellpi ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑋 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ellpi.b 𝐵 = ( Base ‘ 𝑅 )
2 ellpi.k 𝐾 = ( RSpan ‘ 𝑅 )
3 ellpi.d = ( ∥r𝑅 )
4 ellpi.r ( 𝜑𝑅 ∈ Ring )
5 ellpi.x ( 𝜑𝑋𝐵 )
6 elex ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) → 𝑌 ∈ V )
7 6 adantl ( ( 𝜑𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ V )
8 3 reldvdsr Rel
9 8 brrelex2i ( 𝑋 𝑌𝑌 ∈ V )
10 9 adantl ( ( 𝜑𝑋 𝑌 ) → 𝑌 ∈ V )
11 1 2 3 rspsn ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝐾 ‘ { 𝑋 } ) = { 𝑦𝑋 𝑦 } )
12 4 5 11 syl2anc ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) = { 𝑦𝑋 𝑦 } )
13 12 eleq2d ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑌 ∈ { 𝑦𝑋 𝑦 } ) )
14 breq2 ( 𝑦 = 𝑌 → ( 𝑋 𝑦𝑋 𝑌 ) )
15 14 elabg ( 𝑌 ∈ V → ( 𝑌 ∈ { 𝑦𝑋 𝑦 } ↔ 𝑋 𝑌 ) )
16 13 15 sylan9bb ( ( 𝜑𝑌 ∈ V ) → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑋 𝑌 ) )
17 7 10 16 bibiad ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑋 𝑌 ) )