Step |
Hyp |
Ref |
Expression |
1 |
|
ellpi.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ellpi.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
ellpi.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
ellpi.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
ellpi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
elex |
⊢ ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) → 𝑌 ∈ V ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ V ) |
8 |
3
|
reldvdsr |
⊢ Rel ∥ |
9 |
8
|
brrelex2i |
⊢ ( 𝑋 ∥ 𝑌 → 𝑌 ∈ V ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∥ 𝑌 ) → 𝑌 ∈ V ) |
11 |
1 2 3
|
rspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ∥ 𝑦 } ) |
12 |
4 5 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) = { 𝑦 ∣ 𝑋 ∥ 𝑦 } ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑌 ∈ { 𝑦 ∣ 𝑋 ∥ 𝑦 } ) ) |
14 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 ∥ 𝑦 ↔ 𝑋 ∥ 𝑌 ) ) |
15 |
14
|
elabg |
⊢ ( 𝑌 ∈ V → ( 𝑌 ∈ { 𝑦 ∣ 𝑋 ∥ 𝑦 } ↔ 𝑋 ∥ 𝑌 ) ) |
16 |
13 15
|
sylan9bb |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ V ) → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑋 ∥ 𝑌 ) ) |
17 |
7 10 16
|
bibiad |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ 𝑋 ∥ 𝑌 ) ) |