Step |
Hyp |
Ref |
Expression |
1 |
|
ellspd.n |
⊢ 𝑁 = ( LSpan ‘ 𝑀 ) |
2 |
|
ellspd.v |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
3 |
|
ellspd.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
4 |
|
ellspd.s |
⊢ 𝑆 = ( Scalar ‘ 𝑀 ) |
5 |
|
ellspd.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
6 |
|
ellspd.t |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
7 |
|
ellspd.f |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
8 |
|
ellspd.m |
⊢ ( 𝜑 → 𝑀 ∈ LMod ) |
9 |
|
ellspd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
10 |
|
ffn |
⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 → 𝐹 Fn 𝐼 ) |
11 |
|
fnima |
⊢ ( 𝐹 Fn 𝐼 → ( 𝐹 “ 𝐼 ) = ran 𝐹 ) |
12 |
7 10 11
|
3syl |
⊢ ( 𝜑 → ( 𝐹 “ 𝐼 ) = ran 𝐹 ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐹 “ 𝐼 ) ) = ( 𝑁 ‘ ran 𝐹 ) ) |
14 |
|
eqid |
⊢ ( 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↦ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) = ( 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↦ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) |
15 |
14
|
rnmpt |
⊢ ran ( 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↦ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) = { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } |
16 |
|
eqid |
⊢ ( 𝑆 freeLMod 𝐼 ) = ( 𝑆 freeLMod 𝐼 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) |
18 |
4
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑀 ) ) |
19 |
16 17 2 6 14 8 9 18 7 1
|
frlmup3 |
⊢ ( 𝜑 → ran ( 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↦ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) = ( 𝑁 ‘ ran 𝐹 ) ) |
20 |
15 19
|
eqtr3id |
⊢ ( 𝜑 → { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } = ( 𝑁 ‘ ran 𝐹 ) ) |
21 |
13 20
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐹 “ 𝐼 ) ) = { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } ) |
22 |
21
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ( 𝐹 “ 𝐼 ) ) ↔ 𝑋 ∈ { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } ) ) |
23 |
|
ovex |
⊢ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ∈ V |
24 |
|
eleq1 |
⊢ ( 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) → ( 𝑋 ∈ V ↔ ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ∈ V ) ) |
25 |
23 24
|
mpbiri |
⊢ ( 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) → 𝑋 ∈ V ) |
26 |
25
|
rexlimivw |
⊢ ( ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) → 𝑋 ∈ V ) |
27 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ↔ 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑎 = 𝑋 → ( ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ↔ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) |
29 |
26 28
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } ↔ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) |
30 |
4
|
fvexi |
⊢ 𝑆 ∈ V |
31 |
|
eqid |
⊢ { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } = { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } |
32 |
16 3 5 31
|
frlmbas |
⊢ ( ( 𝑆 ∈ V ∧ 𝐼 ∈ 𝑉 ) → { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } = ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ) |
33 |
30 9 32
|
sylancr |
⊢ ( 𝜑 → { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } = ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ) |
34 |
33
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) = { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } ) |
35 |
34
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ↔ ∃ 𝑓 ∈ { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) |
36 |
|
breq1 |
⊢ ( 𝑎 = 𝑓 → ( 𝑎 finSupp 0 ↔ 𝑓 finSupp 0 ) ) |
37 |
36
|
rexrab |
⊢ ( ∃ 𝑓 ∈ { 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∣ 𝑎 finSupp 0 } 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ↔ ∃ 𝑓 ∈ ( 𝐾 ↑m 𝐼 ) ( 𝑓 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) |
38 |
35 37
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ↔ ∃ 𝑓 ∈ ( 𝐾 ↑m 𝐼 ) ( 𝑓 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) ) |
39 |
29 38
|
syl5bb |
⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑎 ∣ ∃ 𝑓 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) 𝑎 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) } ↔ ∃ 𝑓 ∈ ( 𝐾 ↑m 𝐼 ) ( 𝑓 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) ) |
40 |
22 39
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ( 𝐹 “ 𝐼 ) ) ↔ ∃ 𝑓 ∈ ( 𝐾 ↑m 𝐼 ) ( 𝑓 finSupp 0 ∧ 𝑋 = ( 𝑀 Σg ( 𝑓 ∘f · 𝐹 ) ) ) ) ) |