Database BASIC ALGEBRAIC STRUCTURES Left modules Subspaces and spans in a left module ellspsn3  
				
		 
		
			
		 
		Description:   A member of the span of the singleton of a vector is a member of a
       subspace containing the vector.  ( elspansn3  analog.)  (Contributed by NM , 4-Jul-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lspsnss.s ⊢  𝑆   =  ( LSubSp ‘ 𝑊  )  
					
						lspsnss.n ⊢  𝑁   =  ( LSpan ‘ 𝑊  )  
					
						ellspsn3.w ⊢  ( 𝜑   →  𝑊   ∈  LMod )  
					
						ellspsn3.u ⊢  ( 𝜑   →  𝑈   ∈  𝑆  )  
					
						ellspsn3.x ⊢  ( 𝜑   →  𝑋   ∈  𝑈  )  
					
						ellspsn3.y ⊢  ( 𝜑   →  𝑌   ∈  ( 𝑁  ‘ { 𝑋  } ) )  
				
					Assertion 
					ellspsn3 ⊢   ( 𝜑   →  𝑌   ∈  𝑈  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lspsnss.s ⊢  𝑆   =  ( LSubSp ‘ 𝑊  )  
						
							2 
								
							 
							lspsnss.n ⊢  𝑁   =  ( LSpan ‘ 𝑊  )  
						
							3 
								
							 
							ellspsn3.w ⊢  ( 𝜑   →  𝑊   ∈  LMod )  
						
							4 
								
							 
							ellspsn3.u ⊢  ( 𝜑   →  𝑈   ∈  𝑆  )  
						
							5 
								
							 
							ellspsn3.x ⊢  ( 𝜑   →  𝑋   ∈  𝑈  )  
						
							6 
								
							 
							ellspsn3.y ⊢  ( 𝜑   →  𝑌   ∈  ( 𝑁  ‘ { 𝑋  } ) )  
						
							7 
								1  2 
							 
							lspsnss ⊢  ( ( 𝑊   ∈  LMod  ∧  𝑈   ∈  𝑆   ∧  𝑋   ∈  𝑈  )  →  ( 𝑁  ‘ { 𝑋  } )  ⊆  𝑈  )  
						
							8 
								3  4  5  7 
							 
							syl3anc ⊢  ( 𝜑   →  ( 𝑁  ‘ { 𝑋  } )  ⊆  𝑈  )  
						
							9 
								8  6 
							 
							sseldd ⊢  ( 𝜑   →  𝑌   ∈  𝑈  )