Metamath Proof Explorer


Theorem ellspsn4

Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn4 analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses ellspsn4.v 𝑉 = ( Base ‘ 𝑊 )
ellspsn4.o 0 = ( 0g𝑊 )
ellspsn4.s 𝑆 = ( LSubSp ‘ 𝑊 )
ellspsn4.n 𝑁 = ( LSpan ‘ 𝑊 )
ellspsn4.w ( 𝜑𝑊 ∈ LVec )
ellspsn4.u ( 𝜑𝑈𝑆 )
ellspsn4.x ( 𝜑𝑋𝑉 )
ellspsn4.y ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) )
ellspsn4.z ( 𝜑𝑌0 )
Assertion ellspsn4 ( 𝜑 → ( 𝑋𝑈𝑌𝑈 ) )

Proof

Step Hyp Ref Expression
1 ellspsn4.v 𝑉 = ( Base ‘ 𝑊 )
2 ellspsn4.o 0 = ( 0g𝑊 )
3 ellspsn4.s 𝑆 = ( LSubSp ‘ 𝑊 )
4 ellspsn4.n 𝑁 = ( LSpan ‘ 𝑊 )
5 ellspsn4.w ( 𝜑𝑊 ∈ LVec )
6 ellspsn4.u ( 𝜑𝑈𝑆 )
7 ellspsn4.x ( 𝜑𝑋𝑉 )
8 ellspsn4.y ( 𝜑𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) )
9 ellspsn4.z ( 𝜑𝑌0 )
10 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
11 5 10 syl ( 𝜑𝑊 ∈ LMod )
12 11 adantr ( ( 𝜑𝑋𝑈 ) → 𝑊 ∈ LMod )
13 6 adantr ( ( 𝜑𝑋𝑈 ) → 𝑈𝑆 )
14 simpr ( ( 𝜑𝑋𝑈 ) → 𝑋𝑈 )
15 8 adantr ( ( 𝜑𝑋𝑈 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) )
16 3 4 12 13 14 15 ellspsn3 ( ( 𝜑𝑋𝑈 ) → 𝑌𝑈 )
17 11 adantr ( ( 𝜑𝑌𝑈 ) → 𝑊 ∈ LMod )
18 6 adantr ( ( 𝜑𝑌𝑈 ) → 𝑈𝑆 )
19 simpr ( ( 𝜑𝑌𝑈 ) → 𝑌𝑈 )
20 1 4 lspsnid ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) )
21 11 7 20 syl2anc ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) )
22 1 2 4 5 7 8 9 lspsneleq ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) )
23 21 22 eleqtrrd ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) )
24 23 adantr ( ( 𝜑𝑌𝑈 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) )
25 3 4 17 18 19 24 ellspsn3 ( ( 𝜑𝑌𝑈 ) → 𝑋𝑈 )
26 16 25 impbida ( 𝜑 → ( 𝑋𝑈𝑌𝑈 ) )