| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellspsn4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ellspsn4.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
ellspsn4.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
ellspsn4.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
ellspsn4.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
ellspsn4.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 7 |
|
ellspsn4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 8 |
|
ellspsn4.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 9 |
|
ellspsn4.z |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 |
3 4 12 13 14 15
|
ellspsn3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 17 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 20 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 21 |
11 7 20
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 22 |
1 2 4 5 7 8 9
|
lspsneleq |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 23 |
21 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 25 |
3 4 17 18 19 24
|
ellspsn3 |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 26 |
16 25
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈 ) ) |