Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellspsn5.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| ellspsn5.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| ellspsn5.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| ellspsn5.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| ellspsn5.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| Assertion | ellspsn5 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | ellspsn5.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | ellspsn5.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | ellspsn5.a | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 5 | ellspsn5.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 1 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 9 | 6 1 2 3 4 8 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| 10 | 5 9 | mpbid | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |