Metamath Proof Explorer


Theorem ellspsn5b

Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014)

Ref Expression
Hypotheses ellspsn5b.v 𝑉 = ( Base ‘ 𝑊 )
ellspsn5b.s 𝑆 = ( LSubSp ‘ 𝑊 )
ellspsn5b.n 𝑁 = ( LSpan ‘ 𝑊 )
ellspsn5b.w ( 𝜑𝑊 ∈ LMod )
ellspsn5b.a ( 𝜑𝑈𝑆 )
ellspsn5b.x ( 𝜑𝑋𝑉 )
Assertion ellspsn5b ( 𝜑 → ( 𝑋𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 ellspsn5b.v 𝑉 = ( Base ‘ 𝑊 )
2 ellspsn5b.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 ellspsn5b.n 𝑁 = ( LSpan ‘ 𝑊 )
4 ellspsn5b.w ( 𝜑𝑊 ∈ LMod )
5 ellspsn5b.a ( 𝜑𝑈𝑆 )
6 ellspsn5b.x ( 𝜑𝑋𝑉 )
7 1 2 3 4 5 ellspsn6 ( 𝜑 → ( 𝑋𝑈 ↔ ( 𝑋𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) )
8 6 7 mpbirand ( 𝜑 → ( 𝑋𝑈 ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) )