| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellspsn5b.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
ellspsn5b.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
ellspsn5b.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
ellspsn5b.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
ellspsn5b.a |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 6 |
1 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 7 |
5 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 11 |
2 3
|
lspsnss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 13 |
7 12
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| 14 |
1 3
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 15 |
4 14
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 16 |
|
ssel |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) → 𝑋 ∈ 𝑈 ) ) |
| 17 |
15 16
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 18 |
17
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) → 𝑋 ∈ 𝑈 ) |
| 19 |
13 18
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |