| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnvsel.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnvsel.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lspsnvsel.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lspsnvsel.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lspsnvsel.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 6 |
|
lspsnvsel.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
lspsnvsel.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 8 |
|
lspsnvsel.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
1 9 5
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
6 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
1 5
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 13 |
6 8 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 14 |
3 2 4 9
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 15 |
6 11 7 13 14
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |