Description: Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elmapex | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ¬ ( 𝐵 ↑m 𝐶 ) = ∅ ) | |
2 | fnmap | ⊢ ↑m Fn ( V × V ) | |
3 | 2 | fndmi | ⊢ dom ↑m = ( V × V ) |
4 | 3 | ndmov | ⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐵 ↑m 𝐶 ) = ∅ ) |
5 | 1 4 | nsyl2 | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |