Metamath Proof Explorer


Theorem elmapg

Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion elmapg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 : 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 mapvalg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴m 𝐵 ) = { 𝑔𝑔 : 𝐵𝐴 } )
2 1 eleq2d ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 ∈ { 𝑔𝑔 : 𝐵𝐴 } ) )
3 fex2 ( ( 𝐶 : 𝐵𝐴𝐵𝑊𝐴𝑉 ) → 𝐶 ∈ V )
4 3 3com13 ( ( 𝐴𝑉𝐵𝑊𝐶 : 𝐵𝐴 ) → 𝐶 ∈ V )
5 4 3expia ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 : 𝐵𝐴𝐶 ∈ V ) )
6 feq1 ( 𝑔 = 𝐶 → ( 𝑔 : 𝐵𝐴𝐶 : 𝐵𝐴 ) )
7 6 elab3g ( ( 𝐶 : 𝐵𝐴𝐶 ∈ V ) → ( 𝐶 ∈ { 𝑔𝑔 : 𝐵𝐴 } ↔ 𝐶 : 𝐵𝐴 ) )
8 5 7 syl ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 ∈ { 𝑔𝑔 : 𝐵𝐴 } ↔ 𝐶 : 𝐵𝐴 ) )
9 2 8 bitrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐶 ∈ ( 𝐴m 𝐵 ) ↔ 𝐶 : 𝐵𝐴 ) )