Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapi | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐴 : 𝐶 ⟶ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elmapex | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) | |
| 2 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝐴 : 𝐶 ⟶ 𝐵 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) ↔ 𝐴 : 𝐶 ⟶ 𝐵 ) ) | 
| 4 | 3 | ibi | ⊢ ( 𝐴 ∈ ( 𝐵 ↑m 𝐶 ) → 𝐴 : 𝐶 ⟶ 𝐵 ) |