Metamath Proof Explorer


Theorem elmapi

Description: A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion elmapi ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐴 : 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 elmapex ( 𝐴 ∈ ( 𝐵m 𝐶 ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) )
2 elmapg ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ ( 𝐵m 𝐶 ) ↔ 𝐴 : 𝐶𝐵 ) )
3 1 2 syl ( 𝐴 ∈ ( 𝐵m 𝐶 ) → ( 𝐴 ∈ ( 𝐵m 𝐶 ) ↔ 𝐴 : 𝐶𝐵 ) )
4 3 ibi ( 𝐴 ∈ ( 𝐵m 𝐶 ) → 𝐴 : 𝐶𝐵 )