| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi | ⊢ ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  →  𝐹 : 𝐴 ⟶ 𝐶 ) | 
						
							| 2 |  | elmapi | ⊢ ( 𝐺  ∈  ( 𝐶  ↑m  𝐵 )  →  𝐺 : 𝐵 ⟶ 𝐶 ) | 
						
							| 3 |  | id | ⊢ ( ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) )  →  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 4 |  | fresaun | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶  ∧  𝐺 : 𝐵 ⟶ 𝐶  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐹  ∪  𝐺 ) : ( 𝐴  ∪  𝐵 ) ⟶ 𝐶 ) | 
						
							| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐹  ∪  𝐺 ) : ( 𝐴  ∪  𝐵 ) ⟶ 𝐶 ) | 
						
							| 6 |  | elmapex | ⊢ ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  →  ( 𝐶  ∈  V  ∧  𝐴  ∈  V ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  →  𝐶  ∈  V ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  𝐶  ∈  V ) | 
						
							| 9 | 6 | simprd | ⊢ ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  →  𝐴  ∈  V ) | 
						
							| 10 |  | elmapex | ⊢ ( 𝐺  ∈  ( 𝐶  ↑m  𝐵 )  →  ( 𝐶  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( 𝐺  ∈  ( 𝐶  ↑m  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 12 |  | unexg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 13 | 9 11 12 | syl2an | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 ) )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 15 | 8 14 | elmapd | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( ( 𝐹  ∪  𝐺 )  ∈  ( 𝐶  ↑m  ( 𝐴  ∪  𝐵 ) )  ↔  ( 𝐹  ∪  𝐺 ) : ( 𝐴  ∪  𝐵 ) ⟶ 𝐶 ) ) | 
						
							| 16 | 5 15 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐵 )  ∧  ( 𝐹  ↾  ( 𝐴  ∩  𝐵 ) )  =  ( 𝐺  ↾  ( 𝐴  ∩  𝐵 ) ) )  →  ( 𝐹  ∪  𝐺 )  ∈  ( 𝐶  ↑m  ( 𝐴  ∪  𝐵 ) ) ) |