Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐶 ) |
2 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐺 : 𝐵 ⟶ 𝐶 ) |
3 |
|
id |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
4 |
|
fresaun |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) |
6 |
|
elmapex |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) ) |
7 |
6
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐶 ∈ V ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → 𝐶 ∈ V ) |
9 |
6
|
simprd |
⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) → 𝐴 ∈ V ) |
10 |
|
elmapex |
⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) ) |
11 |
10
|
simprd |
⊢ ( 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐵 ∈ V ) |
12 |
|
unexg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
13 |
9 11 12
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
15 |
8 14
|
elmapd |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ↔ ( 𝐹 ∪ 𝐺 ) : ( 𝐴 ∪ 𝐵 ) ⟶ 𝐶 ) ) |
16 |
5 15
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝐹 ∪ 𝐺 ) ∈ ( 𝐶 ↑m ( 𝐴 ∪ 𝐵 ) ) ) |