| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  →  𝐴 : 𝐶 ⟶ 𝐵 ) | 
						
							| 2 |  | fssres | ⊢ ( ( 𝐴 : 𝐶 ⟶ 𝐵  ∧  𝐷  ⊆  𝐶 )  →  ( 𝐴  ↾  𝐷 ) : 𝐷 ⟶ 𝐵 ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  ∧  𝐷  ⊆  𝐶 )  →  ( 𝐴  ↾  𝐷 ) : 𝐷 ⟶ 𝐵 ) | 
						
							| 4 |  | elmapex | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  →  ( 𝐵  ∈  V  ∧  𝐶  ∈  V ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  →  𝐵  ∈  V ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  ∧  𝐷  ⊆  𝐶 )  →  𝐵  ∈  V ) | 
						
							| 7 | 4 | simprd | ⊢ ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  →  𝐶  ∈  V ) | 
						
							| 8 |  | ssexg | ⊢ ( ( 𝐷  ⊆  𝐶  ∧  𝐶  ∈  V )  →  𝐷  ∈  V ) | 
						
							| 9 | 8 | ancoms | ⊢ ( ( 𝐶  ∈  V  ∧  𝐷  ⊆  𝐶 )  →  𝐷  ∈  V ) | 
						
							| 10 | 7 9 | sylan | ⊢ ( ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  ∧  𝐷  ⊆  𝐶 )  →  𝐷  ∈  V ) | 
						
							| 11 | 6 10 | elmapd | ⊢ ( ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  ∧  𝐷  ⊆  𝐶 )  →  ( ( 𝐴  ↾  𝐷 )  ∈  ( 𝐵  ↑m  𝐷 )  ↔  ( 𝐴  ↾  𝐷 ) : 𝐷 ⟶ 𝐵 ) ) | 
						
							| 12 | 3 11 | mpbird | ⊢ ( ( 𝐴  ∈  ( 𝐵  ↑m  𝐶 )  ∧  𝐷  ⊆  𝐶 )  →  ( 𝐴  ↾  𝐷 )  ∈  ( 𝐵  ↑m  𝐷 ) ) |