Metamath Proof Explorer


Theorem elmpocl2

Description: If a two-parameter class is not empty, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012) (Revised by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis elmpocl.f 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion elmpocl2 ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → 𝑇𝐵 )

Proof

Step Hyp Ref Expression
1 elmpocl.f 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 elmpocl ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ( 𝑆𝐴𝑇𝐵 ) )
3 2 simprd ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → 𝑇𝐵 )