Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | elmptima | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐷 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) 𝐶 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐷 ) = ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) | |
2 | 1 | a1i | ⊢ ( 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐷 ) = ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) ) |
3 | 2 | eleq2d | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐷 ) ↔ 𝐶 ∈ ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) ) ) |
4 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) | |
5 | 4 | elrnmpt | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ran ( 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) 𝐶 = 𝐵 ) ) |
6 | 3 5 | bitrd | ⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) “ 𝐷 ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ 𝐷 ) 𝐶 = 𝐵 ) ) |