Metamath Proof Explorer


Theorem elmptima

Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion elmptima ( 𝐶𝑉 → ( 𝐶 ∈ ( ( 𝑥𝐴𝐵 ) “ 𝐷 ) ↔ ∃ 𝑥 ∈ ( 𝐴𝐷 ) 𝐶 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mptima ( ( 𝑥𝐴𝐵 ) “ 𝐷 ) = ran ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 )
2 1 a1i ( 𝐶𝑉 → ( ( 𝑥𝐴𝐵 ) “ 𝐷 ) = ran ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 ) )
3 2 eleq2d ( 𝐶𝑉 → ( 𝐶 ∈ ( ( 𝑥𝐴𝐵 ) “ 𝐷 ) ↔ 𝐶 ∈ ran ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 ) ) )
4 eqid ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 )
5 4 elrnmpt ( 𝐶𝑉 → ( 𝐶 ∈ ran ( 𝑥 ∈ ( 𝐴𝐷 ) ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ ( 𝐴𝐷 ) 𝐶 = 𝐵 ) )
6 3 5 bitrd ( 𝐶𝑉 → ( 𝐶 ∈ ( ( 𝑥𝐴𝐵 ) “ 𝐷 ) ↔ ∃ 𝑥 ∈ ( 𝐴𝐷 ) 𝐶 = 𝐵 ) )