| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmptrab.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐷  ↦  { 𝑦  ∈  𝐵  ∣  𝜑 } ) | 
						
							| 2 |  | elmptrab.s1 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | elmptrab.s2 | ⊢ ( 𝑥  =  𝑋  →  𝐵  =  𝐶 ) | 
						
							| 4 |  | elmptrab.ex | ⊢ ( 𝑥  ∈  𝐷  →  𝐵  ∈  𝑉 ) | 
						
							| 5 | 1 | mptrcl | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  →  𝑋  ∈  𝐷 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶  ∧  𝜓 )  →  𝑋  ∈  𝐷 ) | 
						
							| 7 |  | csbeq1 | ⊢ ( 𝑧  =  𝑋  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  =  ⦋ 𝑋  /  𝑥 ⦌ 𝐵 ) | 
						
							| 8 |  | dfsbcq | ⊢ ( 𝑧  =  𝑋  →  ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 9 | 7 8 | rabeqbidv | ⊢ ( 𝑧  =  𝑋  →  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  =  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑧 { 𝑦  ∈  𝐵  ∣  𝜑 } | 
						
							| 11 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 12 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 13 | 11 12 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } | 
						
							| 14 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 15 |  | sbceq1a | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 14 15 | rabeqbidv | ⊢ ( 𝑥  =  𝑧  →  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑦  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] 𝜑 } ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑤 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑦 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑦 𝑧 | 
						
							| 20 |  | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 21 | 19 20 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑤 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 23 |  | sbccom | ⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑤  /  𝑦 ] [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 24 |  | sbceq1a | ⊢ ( 𝑦  =  𝑤  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑤  /  𝑦 ] [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 25 | 24 | equcoms | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑤  /  𝑦 ] [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 26 | 23 25 | bitr4id | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 27 | 17 18 21 22 26 | cbvrabw | ⊢ { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  =  { 𝑦  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] 𝜑 } | 
						
							| 28 | 16 27 | eqtr4di | ⊢ ( 𝑥  =  𝑧  →  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) | 
						
							| 29 | 10 13 28 | cbvmpt | ⊢ ( 𝑥  ∈  𝐷  ↦  { 𝑦  ∈  𝐵  ∣  𝜑 } )  =  ( 𝑧  ∈  𝐷  ↦  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) | 
						
							| 30 | 1 29 | eqtri | ⊢ 𝐹  =  ( 𝑧  ∈  𝐷  ↦  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  𝐷 | 
						
							| 32 | 12 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉 | 
						
							| 33 | 31 32 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐷  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 34 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐷  ↔  𝑧  ∈  𝐷 ) ) | 
						
							| 35 | 14 | eleq1d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐵  ∈  𝑉  ↔  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) ) | 
						
							| 36 | 34 35 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐷  →  𝐵  ∈  𝑉 )  ↔  ( 𝑧  ∈  𝐷  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) ) ) | 
						
							| 37 | 33 36 4 | chvarfv | ⊢ ( 𝑧  ∈  𝐷  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 38 |  | rabexg | ⊢ ( ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∈  𝑉  →  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  ∈  V ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝑧  ∈  𝐷  →  { 𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  ∣  [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  ∈  V ) | 
						
							| 40 | 9 30 39 | fvmpt3 | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝐹 ‘ 𝑋 )  =  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) | 
						
							| 41 | 40 | eleq2d | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  ↔  𝑌  ∈  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 } ) ) | 
						
							| 42 |  | dfsbcq | ⊢ ( 𝑤  =  𝑌  →  ( [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑌  /  𝑦 ] 𝜑 ) ) | 
						
							| 43 | 42 | sbcbidv | ⊢ ( 𝑤  =  𝑌  →  ( [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 ) ) | 
						
							| 44 | 43 | elrab | ⊢ ( 𝑌  ∈  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  ↔  ( 𝑌  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∧  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 ) ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝑌  ∈  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  ↔  ( 𝑌  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∧  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 46 |  | nfcvd | ⊢ ( 𝑋  ∈  𝐷  →  Ⅎ 𝑥 𝐶 ) | 
						
							| 47 | 46 3 | csbiegf | ⊢ ( 𝑋  ∈  𝐷  →  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  =  𝐶 ) | 
						
							| 48 | 47 | eleq2d | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝑌  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ↔  𝑌  ∈  𝐶 ) ) | 
						
							| 49 | 48 | anbi1d | ⊢ ( 𝑋  ∈  𝐷  →  ( ( 𝑌  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∧  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 )  ↔  ( 𝑌  ∈  𝐶  ∧  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 50 |  | nfv | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 51 |  | nfv | ⊢ Ⅎ 𝑦 𝜓 | 
						
							| 52 |  | nfv | ⊢ Ⅎ 𝑥 𝑌  ∈  𝐶 | 
						
							| 53 | 50 51 52 2 | sbc2iegf | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶 )  →  ( [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 54 | 53 | pm5.32da | ⊢ ( 𝑋  ∈  𝐷  →  ( ( 𝑌  ∈  𝐶  ∧  [ 𝑋  /  𝑥 ] [ 𝑌  /  𝑦 ] 𝜑 )  ↔  ( 𝑌  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 55 | 45 49 54 | 3bitrd | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝑌  ∈  { 𝑤  ∈  ⦋ 𝑋  /  𝑥 ⦌ 𝐵  ∣  [ 𝑋  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 }  ↔  ( 𝑌  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 56 |  | 3anass | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶  ∧  𝜓 )  ↔  ( 𝑋  ∈  𝐷  ∧  ( 𝑌  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 57 | 56 | baibr | ⊢ ( 𝑋  ∈  𝐷  →  ( ( 𝑌  ∈  𝐶  ∧  𝜓 )  ↔  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 58 | 41 55 57 | 3bitrd | ⊢ ( 𝑋  ∈  𝐷  →  ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶  ∧  𝜓 ) ) ) | 
						
							| 59 | 5 6 58 | pm5.21nii | ⊢ ( 𝑌  ∈  ( 𝐹 ‘ 𝑋 )  ↔  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐶  ∧  𝜓 ) ) |