Step |
Hyp |
Ref |
Expression |
1 |
|
elmptrab.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
2 |
|
elmptrab.s1 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
elmptrab.s2 |
⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) |
4 |
|
elmptrab.ex |
⊢ ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) |
5 |
1
|
mptrcl |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝐷 ) |
6 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) → 𝑋 ∈ 𝐷 ) |
7 |
|
csbeq1 |
⊢ ( 𝑧 = 𝑋 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
8 |
|
dfsbcq |
⊢ ( 𝑧 = 𝑋 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |
9 |
7 8
|
rabeqbidv |
⊢ ( 𝑧 = 𝑋 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } = { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
11 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
13 |
11 12
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } |
14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
15 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
16 |
14 15
|
rabeqbidv |
⊢ ( 𝑥 = 𝑧 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] 𝜑 } ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑤 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
18 |
|
nfcv |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
19 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
20 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 |
21 |
19 20
|
nfsbcw |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
22 |
|
nfv |
⊢ Ⅎ 𝑤 [ 𝑧 / 𝑥 ] 𝜑 |
23 |
|
sbccom |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
24 |
|
sbceq1a |
⊢ ( 𝑦 = 𝑤 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
25 |
24
|
equcoms |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
26 |
23 25
|
bitr4id |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
27 |
17 18 21 22 26
|
cbvrabw |
⊢ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } = { 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] 𝜑 } |
28 |
16 27
|
eqtr4di |
⊢ ( 𝑥 = 𝑧 → { 𝑦 ∈ 𝐵 ∣ 𝜑 } = { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
29 |
10 13 28
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐷 ↦ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝑧 ∈ 𝐷 ↦ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
30 |
1 29
|
eqtri |
⊢ 𝐹 = ( 𝑧 ∈ 𝐷 ↦ { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
31 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐷 |
32 |
12
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 |
33 |
31 32
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
34 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷 ) ) |
35 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) |
36 |
34 35
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) ↔ ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
37 |
33 36 4
|
chvarfv |
⊢ ( 𝑧 ∈ 𝐷 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
38 |
|
rabexg |
⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ 𝑉 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ∈ V ) |
39 |
37 38
|
syl |
⊢ ( 𝑧 ∈ 𝐷 → { 𝑤 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∣ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ∈ V ) |
40 |
9 30 39
|
fvmpt3 |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝐹 ‘ 𝑋 ) = { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) |
41 |
40
|
eleq2d |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ) ) |
42 |
|
dfsbcq |
⊢ ( 𝑤 = 𝑌 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) |
43 |
42
|
sbcbidv |
⊢ ( 𝑤 = 𝑌 → ( [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
44 |
43
|
elrab |
⊢ ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
45 |
44
|
a1i |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) ) |
46 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝐷 → Ⅎ 𝑥 𝐶 ) |
47 |
46 3
|
csbiegf |
⊢ ( 𝑋 ∈ 𝐷 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
48 |
47
|
eleq2d |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ 𝑌 ∈ 𝐶 ) ) |
49 |
48
|
anbi1d |
⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ↔ ( 𝑌 ∈ 𝐶 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) ) |
50 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
51 |
|
nfv |
⊢ Ⅎ 𝑦 𝜓 |
52 |
|
nfv |
⊢ Ⅎ 𝑥 𝑌 ∈ 𝐶 |
53 |
50 51 52 2
|
sbc2iegf |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ) → ( [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
54 |
53
|
pm5.32da |
⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ 𝐶 ∧ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
55 |
45 49 54
|
3bitrd |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ { 𝑤 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∣ [ 𝑋 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 } ↔ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
56 |
|
3anass |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝑋 ∈ 𝐷 ∧ ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
57 |
56
|
baibr |
⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑌 ∈ 𝐶 ∧ 𝜓 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
58 |
41 55 57
|
3bitrd |
⊢ ( 𝑋 ∈ 𝐷 → ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) ) |
59 |
5 6 58
|
pm5.21nii |
⊢ ( 𝑌 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓 ) ) |