| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  𝑀  ∈  𝑉 ) | 
						
							| 2 |  | 3simpc | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) ) | 
						
							| 3 |  | pm3.22 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω ) ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω ) ) | 
						
							| 5 |  | eqid | ⊢ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) )  =  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) | 
						
							| 6 | 5 | satefvfmla1 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω ) )  →  ( 𝑀  Sat∈  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) } ) | 
						
							| 7 | 1 2 4 6 | syl3anc | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑀  Sat∈  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) )  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) } ) | 
						
							| 8 |  | elnanel | ⊢ ( ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ⊼  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 9 |  | nanor | ⊢ ( ( ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ⊼  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) )  ↔  ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑎  ∈  ( 𝑀  ↑m  ω )  →  ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) ) | 
						
							| 12 | 11 | rabeqc | ⊢ { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( ¬  ( 𝑎 ‘ 𝐴 )  ∈  ( 𝑎 ‘ 𝐵 )  ∨  ¬  ( 𝑎 ‘ 𝐵 )  ∈  ( 𝑎 ‘ 𝐴 ) ) }  =  ( 𝑀  ↑m  ω ) | 
						
							| 13 | 7 12 | eqtrdi | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑀  Sat∈  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) )  =  ( 𝑀  ↑m  ω ) ) | 
						
							| 14 |  | ovex | ⊢ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) )  ∈  V | 
						
							| 15 |  | prv | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) )  ∈  V )  →  ( 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) )  ↔  ( 𝑀  Sat∈  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) )  =  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 16 | 1 14 15 | sylancl | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) )  ↔  ( 𝑀  Sat∈  ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) )  =  ( 𝑀  ↑m  ω ) ) ) | 
						
							| 17 | 13 16 | mpbird | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  𝑀 ⊧ ( ( 𝐴 ∈𝑔 𝐵 ) ⊼𝑔 ( 𝐵 ∈𝑔 𝐴 ) ) ) |