Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elneeldif | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 ≠ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴 ) ) | |
| 2 | nelne2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐴 ) → 𝑋 ≠ 𝑌 ) | |
| 3 | 2 | ex | ⊢ ( 𝑋 ∈ 𝐴 → ( ¬ 𝑌 ∈ 𝐴 → 𝑋 ≠ 𝑌 ) ) |
| 4 | 3 | adantld | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑌 ∈ 𝐵 ∧ ¬ 𝑌 ∈ 𝐴 ) → 𝑋 ≠ 𝑌 ) ) |
| 5 | 1 4 | biimtrid | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) → 𝑋 ≠ 𝑌 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 ≠ 𝑌 ) |