Metamath Proof Explorer


Theorem elneeldif

Description: The elements of a set difference and the minuend are not equal. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion elneeldif ( ( 𝑋𝐴𝑌 ∈ ( 𝐵𝐴 ) ) → 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑌 ∈ ( 𝐵𝐴 ) ↔ ( 𝑌𝐵 ∧ ¬ 𝑌𝐴 ) )
2 nelne2 ( ( 𝑋𝐴 ∧ ¬ 𝑌𝐴 ) → 𝑋𝑌 )
3 2 ex ( 𝑋𝐴 → ( ¬ 𝑌𝐴𝑋𝑌 ) )
4 3 adantld ( 𝑋𝐴 → ( ( 𝑌𝐵 ∧ ¬ 𝑌𝐴 ) → 𝑋𝑌 ) )
5 1 4 syl5bi ( 𝑋𝐴 → ( 𝑌 ∈ ( 𝐵𝐴 ) → 𝑋𝑌 ) )
6 5 imp ( ( 𝑋𝐴𝑌 ∈ ( 𝐵𝐴 ) ) → 𝑋𝑌 )