Metamath Proof Explorer


Theorem elnei

Description: A point belongs to any of its neighborhoods. Property V_iii of BourbakiTop1 p. I.3. (Contributed by FL, 28-Sep-2006)

Ref Expression
Assertion elnei ( ( 𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑃𝑁 )

Proof

Step Hyp Ref Expression
1 ssnei ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → { 𝑃 } ⊆ 𝑁 )
2 1 3adant2 ( ( 𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → { 𝑃 } ⊆ 𝑁 )
3 snssg ( 𝑃𝐴 → ( 𝑃𝑁 ↔ { 𝑃 } ⊆ 𝑁 ) )
4 3 3ad2ant2 ( ( 𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( 𝑃𝑁 ↔ { 𝑃 } ⊆ 𝑁 ) )
5 2 4 mpbird ( ( 𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ) → 𝑃𝑁 )