Metamath Proof Explorer
Description: Two classes are different if they don't contain the same element.
(Contributed by AV, 28-Jan-2020)
|
|
Ref |
Expression |
|
Assertion |
elnelne1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
⊢ ( 𝐴 ∉ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶 ) |
| 2 |
|
nelne1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 3 |
1 2
|
sylan2b |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∉ 𝐶 ) → 𝐵 ≠ 𝐶 ) |