Metamath Proof Explorer
Description: Two classes are different if they don't belong to the same class.
(Contributed by AV, 28-Jan-2020)
|
|
Ref |
Expression |
|
Assertion |
elnelne2 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
⊢ ( 𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶 ) |
2 |
|
nelne2 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
3 |
1 2
|
sylan2b |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶 ) → 𝐴 ≠ 𝐵 ) |