Metamath Proof Explorer


Theorem elnelne2

Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion elnelne2 ( ( 𝐴𝐶𝐵𝐶 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 df-nel ( 𝐵𝐶 ↔ ¬ 𝐵𝐶 )
2 nelne2 ( ( 𝐴𝐶 ∧ ¬ 𝐵𝐶 ) → 𝐴𝐵 )
3 1 2 sylan2b ( ( 𝐴𝐶𝐵𝐶 ) → 𝐴𝐵 )