Metamath Proof Explorer


Theorem elnelun

Description: The union of the set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)

Ref Expression
Hypotheses elneldisj.e 𝐸 = { 𝑠𝐴𝐵𝐶 }
elneldisj.n 𝑁 = { 𝑠𝐴𝐵𝐶 }
Assertion elnelun ( 𝐸𝑁 ) = 𝐴

Proof

Step Hyp Ref Expression
1 elneldisj.e 𝐸 = { 𝑠𝐴𝐵𝐶 }
2 elneldisj.n 𝑁 = { 𝑠𝐴𝐵𝐶 }
3 df-nel ( 𝐵𝐶 ↔ ¬ 𝐵𝐶 )
4 3 rabbii { 𝑠𝐴𝐵𝐶 } = { 𝑠𝐴 ∣ ¬ 𝐵𝐶 }
5 2 4 eqtri 𝑁 = { 𝑠𝐴 ∣ ¬ 𝐵𝐶 }
6 1 5 uneq12i ( 𝐸𝑁 ) = ( { 𝑠𝐴𝐵𝐶 } ∪ { 𝑠𝐴 ∣ ¬ 𝐵𝐶 } )
7 rabxm 𝐴 = ( { 𝑠𝐴𝐵𝐶 } ∪ { 𝑠𝐴 ∣ ¬ 𝐵𝐶 } )
8 6 7 eqtr4i ( 𝐸𝑁 ) = 𝐴