Metamath Proof Explorer


Theorem elni

Description: Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion elni ( 𝐴N ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 df-ni N = ( ω ∖ { ∅ } )
2 1 eleq2i ( 𝐴N𝐴 ∈ ( ω ∖ { ∅ } ) )
3 eldifsn ( 𝐴 ∈ ( ω ∖ { ∅ } ) ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) )
4 2 3 bitri ( 𝐴N ↔ ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) )