| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlfnval |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) |
| 2 |
|
cnvimass |
⊢ ( ◡ 𝑇 “ { 0 } ) ⊆ dom 𝑇 |
| 3 |
1 2
|
eqsstrdi |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ dom 𝑇 ) |
| 4 |
|
fdm |
⊢ ( 𝑇 : ℋ ⟶ ℂ → dom 𝑇 = ℋ ) |
| 5 |
3 4
|
sseqtrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) ⊆ ℋ ) |
| 6 |
5
|
sseld |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) → 𝐴 ∈ ℋ ) ) |
| 7 |
6
|
pm4.71rd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ) ) |
| 8 |
1
|
eleq2d |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
| 10 |
|
ffn |
⊢ ( 𝑇 : ℋ ⟶ ℂ → 𝑇 Fn ℋ ) |
| 11 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ) ) |
| 12 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
| 13 |
11 12
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ↔ ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) ) |
| 15 |
|
0cn |
⊢ 0 ∈ ℂ |
| 16 |
|
vex |
⊢ 𝑥 ∈ V |
| 17 |
16
|
eliniseg |
⊢ ( 0 ∈ ℂ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) ) |
| 18 |
15 17
|
ax-mp |
⊢ ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ 𝑥 𝑇 0 ) |
| 19 |
|
fnbrfvb |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = 0 ↔ 𝑥 𝑇 0 ) ) |
| 20 |
18 19
|
bitr4id |
⊢ ( ( 𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 21 |
20
|
expcom |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝑥 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) |
| 22 |
14 21
|
vtoclga |
⊢ ( 𝐴 ∈ ℋ → ( 𝑇 Fn ℋ → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 23 |
10 22
|
mpan9 |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( ◡ 𝑇 “ { 0 } ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
| 24 |
9 23
|
bitrd |
⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑇 ‘ 𝐴 ) = 0 ) ) |
| 25 |
24
|
pm5.32da |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ( null ‘ 𝑇 ) ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |
| 26 |
7 25
|
bitrd |
⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝐴 ∈ ( null ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) = 0 ) ) ) |