Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom | ⊢ Tr ω | |
| 2 | trel | ⊢ ( Tr ω → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) |