Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
2 |
|
nn0p1nn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) |
3 |
1 2
|
jca |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) ) |
4 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
7 |
4 5 6
|
sylancl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
8 |
|
nnm1nn0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 ) |
10 |
7 9
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
11 |
3 10
|
impbii |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) ) |