Metamath Proof Explorer


Theorem elnn0nn

Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion elnn0nn ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) )

Proof

Step Hyp Ref Expression
1 nn0cn ( 𝑁 ∈ ℕ0𝑁 ∈ ℂ )
2 nn0p1nn ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ )
3 1 2 jca ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) )
4 simpl ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ )
5 ax-1cn 1 ∈ ℂ
6 pncan ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
7 4 5 6 sylancl ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
8 nnm1nn0 ( ( 𝑁 + 1 ) ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 )
9 8 adantl ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 )
10 7 9 eqeltrrd ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 )
11 3 10 impbii ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) )