| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 3 |
|
eqcom |
⊢ ( 𝑁 = 0 ↔ 0 = 𝑁 ) |
| 4 |
2 3
|
orbi12i |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ) |
| 5 |
|
id |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) |
| 6 |
|
0z |
⊢ 0 ∈ ℤ |
| 7 |
|
eleq1 |
⊢ ( 0 = 𝑁 → ( 0 ∈ ℤ ↔ 𝑁 ∈ ℤ ) ) |
| 8 |
6 7
|
mpbii |
⊢ ( 0 = 𝑁 → 𝑁 ∈ ℤ ) |
| 9 |
5 8
|
jaoi |
⊢ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) → 𝑁 ∈ ℤ ) |
| 10 |
|
orc |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ) |
| 11 |
9 10
|
impbii |
⊢ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ↔ 𝑁 ∈ ℤ ) |
| 12 |
11
|
anbi1i |
⊢ ( ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 13 |
|
ordir |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ↔ ( ( 𝑁 ∈ ℤ ∨ 0 = 𝑁 ) ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 14 |
|
0re |
⊢ 0 ∈ ℝ |
| 15 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 16 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑁 ↔ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 18 |
17
|
pm5.32i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ ( 0 < 𝑁 ∨ 0 = 𝑁 ) ) ) |
| 19 |
12 13 18
|
3bitr4i |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ∨ 0 = 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 20 |
1 4 19
|
3bitri |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |