Metamath Proof Explorer


Theorem elnn1uz2

Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion elnn1uz2 ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) )

Proof

Step Hyp Ref Expression
1 eluz2b3 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) )
2 1 orbi2i ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) ↔ ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) )
3 exmidne ( 𝑁 = 1 ∨ 𝑁 ≠ 1 )
4 ordi ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ∧ ( 𝑁 = 1 ∨ 𝑁 ≠ 1 ) ) )
5 3 4 mpbiran2 ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) )
6 1nn 1 ∈ ℕ
7 eleq1 ( 𝑁 = 1 → ( 𝑁 ∈ ℕ ↔ 1 ∈ ℕ ) )
8 6 7 mpbiri ( 𝑁 = 1 → 𝑁 ∈ ℕ )
9 pm2.621 ( ( 𝑁 = 1 → 𝑁 ∈ ℕ ) → ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) )
10 8 9 ax-mp ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ )
11 olc ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) )
12 10 11 impbii ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ↔ 𝑁 ∈ ℕ )
13 2 5 12 3bitrri ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) )