| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
| 2 |
1
|
orbi2i |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ↔ ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ) |
| 3 |
|
exmidne |
⊢ ( 𝑁 = 1 ∨ 𝑁 ≠ 1 ) |
| 4 |
|
ordi |
⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ∧ ( 𝑁 = 1 ∨ 𝑁 ≠ 1 ) ) ) |
| 5 |
3 4
|
mpbiran2 |
⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ) |
| 6 |
|
1nn |
⊢ 1 ∈ ℕ |
| 7 |
|
eleq1 |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = 1 → 𝑁 ∈ ℕ ) |
| 9 |
|
pm2.621 |
⊢ ( ( 𝑁 = 1 → 𝑁 ∈ ℕ ) → ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 11 |
|
olc |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ) |
| 12 |
10 11
|
impbii |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ℕ ) ↔ 𝑁 ∈ ℕ ) |
| 13 |
2 5 12
|
3bitrri |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |