Metamath Proof Explorer


Theorem elnnne0

Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Assertion elnnne0 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 dfn2 ℕ = ( ℕ0 ∖ { 0 } )
2 1 eleq2i ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℕ0 ∖ { 0 } ) )
3 eldifsn ( 𝑁 ∈ ( ℕ0 ∖ { 0 } ) ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )
4 2 3 bitri ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )