Metamath Proof Explorer


Theorem elnnnn0b

Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005)

Ref Expression
Assertion elnnnn0b ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
2 nngt0 ( 𝑁 ∈ ℕ → 0 < 𝑁 )
3 1 2 jca ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) )
4 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
5 breq2 ( 𝑁 = 0 → ( 0 < 𝑁 ↔ 0 < 0 ) )
6 0re 0 ∈ ℝ
7 6 ltnri ¬ 0 < 0
8 7 pm2.21i ( 0 < 0 → 𝑁 ∈ ℕ )
9 5 8 syl6bi ( 𝑁 = 0 → ( 0 < 𝑁𝑁 ∈ ℕ ) )
10 9 jao1i ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 0 < 𝑁𝑁 ∈ ℕ ) )
11 4 10 sylbi ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁𝑁 ∈ ℕ ) )
12 11 imp ( ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ )
13 3 12 impbii ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) )