| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 2 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 3 |
1 2
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |
| 4 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 0 < 𝑁 ↔ 0 < 0 ) ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
6
|
ltnri |
⊢ ¬ 0 < 0 |
| 8 |
7
|
pm2.21i |
⊢ ( 0 < 0 → 𝑁 ∈ ℕ ) |
| 9 |
5 8
|
biimtrdi |
⊢ ( 𝑁 = 0 → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 10 |
9
|
jao1i |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 11 |
4 10
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 12 |
11
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 13 |
3 12
|
impbii |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |