| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 2 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
| 3 |
1 2
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| 4 |
|
0lt1 |
⊢ 0 < 1 |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 8 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝑁 ) → 0 < 𝑁 ) ) |
| 9 |
5 6 7 8
|
mp3an12i |
⊢ ( 𝑁 ∈ ℤ → ( ( 0 < 1 ∧ 1 ≤ 𝑁 ) → 0 < 𝑁 ) ) |
| 10 |
4 9
|
mpani |
⊢ ( 𝑁 ∈ ℤ → ( 1 ≤ 𝑁 → 0 < 𝑁 ) ) |
| 11 |
10
|
imdistani |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 12 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 14 |
3 13
|
impbii |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |