Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ V ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
prex |
⊢ { 1o , 2o } ∈ V |
4 |
|
fex2 |
⊢ ( ( 𝐴 : 𝑥 ⟶ { 1o , 2o } ∧ 𝑥 ∈ V ∧ { 1o , 2o } ∈ V ) → 𝐴 ∈ V ) |
5 |
2 3 4
|
mp3an23 |
⊢ ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → 𝐴 ∈ V ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → 𝐴 ∈ V ) |
7 |
|
feq1 |
⊢ ( 𝑓 = 𝐴 → ( 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑓 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) ) |
9 |
|
df-no |
⊢ No = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } } |
10 |
8 9
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) ) |
11 |
1 6 10
|
pm5.21nii |
⊢ ( 𝐴 ∈ No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) |