Metamath Proof Explorer


Theorem elno

Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011) (Proof shortened by SF, 14-Apr-2012) Avoid ax-rep . (Revised by SN, 5-Jun-2025)

Ref Expression
Assertion elno ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 No 𝐴 ∈ V )
2 vex 𝑥 ∈ V
3 prex { 1o , 2o } ∈ V
4 fex2 ( ( 𝐴 : 𝑥 ⟶ { 1o , 2o } ∧ 𝑥 ∈ V ∧ { 1o , 2o } ∈ V ) → 𝐴 ∈ V )
5 2 3 4 mp3an23 ( 𝐴 : 𝑥 ⟶ { 1o , 2o } → 𝐴 ∈ V )
6 5 rexlimivw ( ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } → 𝐴 ∈ V )
7 feq1 ( 𝑓 = 𝐴 → ( 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
8 7 rexbidv ( 𝑓 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
9 df-no No = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } }
10 8 9 elab2g ( 𝐴 ∈ V → ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } ) )
11 1 6 10 pm5.21nii ( 𝐴 No ↔ ∃ 𝑥 ∈ On 𝐴 : 𝑥 ⟶ { 1o , 2o } )