Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ P → 𝐴 ∈ V ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ∈ V ) |
3 |
|
psseq2 |
⊢ ( 𝑧 = 𝐴 → ( ∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴 ) ) |
4 |
|
psseq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 ⊊ Q ↔ 𝐴 ⊊ Q ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ↔ ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) ) |
6 |
|
eleq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ↔ ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) ) |
9 |
|
rexeq |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
11 |
10
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
12 |
5 11
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
13 |
|
df-np |
⊢ P = { 𝑧 ∣ ( ( ∅ ⊊ 𝑧 ∧ 𝑧 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝑧 𝑥 <Q 𝑦 ) ) } |
14 |
12 13
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ P ↔ ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
15 |
|
id |
⊢ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) |
16 |
15
|
3expib |
⊢ ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) ) |
17 |
|
3simpc |
⊢ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) → ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) |
18 |
16 17
|
impbid1 |
⊢ ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ↔ ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ) ) |
19 |
18
|
anbi1d |
⊢ ( 𝐴 ∈ V → ( ( ( ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
20 |
14 19
|
bitrd |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) ) |
21 |
1 2 20
|
pm5.21nii |
⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |