Metamath Proof Explorer


Theorem elnpi

Description: Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Assertion elnpi ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴P𝐴 ∈ V )
2 simpl1 ( ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) → 𝐴 ∈ V )
3 psseq2 ( 𝑧 = 𝐴 → ( ∅ ⊊ 𝑧 ↔ ∅ ⊊ 𝐴 ) )
4 psseq1 ( 𝑧 = 𝐴 → ( 𝑧Q𝐴Q ) )
5 3 4 anbi12d ( 𝑧 = 𝐴 → ( ( ∅ ⊊ 𝑧𝑧Q ) ↔ ( ∅ ⊊ 𝐴𝐴Q ) ) )
6 eleq2 ( 𝑧 = 𝐴 → ( 𝑦𝑧𝑦𝐴 ) )
7 6 imbi2d ( 𝑧 = 𝐴 → ( ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
8 7 albidv ( 𝑧 = 𝐴 → ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ↔ ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ) )
9 rexeq ( 𝑧 = 𝐴 → ( ∃ 𝑦𝑧 𝑥 <Q 𝑦 ↔ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) )
10 8 9 anbi12d ( 𝑧 = 𝐴 → ( ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
11 10 raleqbi1dv ( 𝑧 = 𝐴 → ( ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ↔ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )
12 5 11 anbi12d ( 𝑧 = 𝐴 → ( ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
13 df-np P = { 𝑧 ∣ ( ( ∅ ⊊ 𝑧𝑧Q ) ∧ ∀ 𝑥𝑧 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝑧 ) ∧ ∃ 𝑦𝑧 𝑥 <Q 𝑦 ) ) }
14 12 13 elab2g ( 𝐴 ∈ V → ( 𝐴P ↔ ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
15 id ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) )
16 15 3expib ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴𝐴Q ) → ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ) )
17 3simpc ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) → ( ∅ ⊊ 𝐴𝐴Q ) )
18 16 17 impbid1 ( 𝐴 ∈ V → ( ( ∅ ⊊ 𝐴𝐴Q ) ↔ ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ) )
19 18 anbi1d ( 𝐴 ∈ V → ( ( ( ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
20 14 19 bitrd ( 𝐴 ∈ V → ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) ) )
21 1 2 20 pm5.21nii ( 𝐴P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴𝐴Q ) ∧ ∀ 𝑥𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥𝑦𝐴 ) ∧ ∃ 𝑦𝐴 𝑥 <Q 𝑦 ) ) )