Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elo1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
elo1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
elo1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
elo1d.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
elo1d.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( abs ‘ 𝐵 ) ≤ 𝑀 ) | ||
Assertion | elo1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
2 | elo1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
3 | elo1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
4 | elo1d.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
5 | elo1d.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐶 ≤ 𝑥 ) ) → ( abs ‘ 𝐵 ) ≤ 𝑀 ) | |
6 | 2 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
7 | 1 6 3 4 5 | ello1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) |
8 | 2 | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
9 | 7 8 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ) |