Metamath Proof Explorer


Theorem elo1d

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses elo1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
elo1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
elo1d.3 ( 𝜑𝐶 ∈ ℝ )
elo1d.4 ( 𝜑𝑀 ∈ ℝ )
elo1d.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝐶𝑥 ) ) → ( abs ‘ 𝐵 ) ≤ 𝑀 )
Assertion elo1d ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) )

Proof

Step Hyp Ref Expression
1 elo1mpt.1 ( 𝜑𝐴 ⊆ ℝ )
2 elo1mpt.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
3 elo1d.3 ( 𝜑𝐶 ∈ ℝ )
4 elo1d.4 ( 𝜑𝑀 ∈ ℝ )
5 elo1d.5 ( ( 𝜑 ∧ ( 𝑥𝐴𝐶𝑥 ) ) → ( abs ‘ 𝐵 ) ≤ 𝑀 )
6 2 abscld ( ( 𝜑𝑥𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ )
7 1 6 3 4 5 ello1d ( 𝜑 → ( 𝑥𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) )
8 2 lo1o12 ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) )
9 7 8 mpbird ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝑂(1) )