| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | ocvfval.i | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | ocvfval.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | ocvfval.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 5 |  | ocvfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 6 |  | elfvdm | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  𝑆  ∈  dom   ⊥  ) | 
						
							| 7 |  | n0i | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  ¬  (  ⊥  ‘ 𝑆 )  =  ∅ ) | 
						
							| 8 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( ocv ‘ 𝑊 )  =  ∅ ) | 
						
							| 9 | 5 8 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →   ⊥   =  ∅ ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ¬  𝑊  ∈  V  →  (  ⊥  ‘ 𝑆 )  =  ( ∅ ‘ 𝑆 ) ) | 
						
							| 11 |  | 0fv | ⊢ ( ∅ ‘ 𝑆 )  =  ∅ | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ¬  𝑊  ∈  V  →  (  ⊥  ‘ 𝑆 )  =  ∅ ) | 
						
							| 13 | 7 12 | nsyl2 | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  𝑊  ∈  V ) | 
						
							| 14 | 1 2 3 4 5 | ocvfval | ⊢ ( 𝑊  ∈  V  →   ⊥   =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →   ⊥   =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } ) ) | 
						
							| 16 | 15 | dmeqd | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  dom   ⊥   =  dom  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } ) ) | 
						
							| 17 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 18 | 17 | rabex | ⊢ { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  }  ∈  V | 
						
							| 19 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } ) | 
						
							| 20 | 18 19 | dmmpti | ⊢ dom  ( 𝑠  ∈  𝒫  𝑉  ↦  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑠 ( 𝑦  ,  𝑥 )  =   0  } )  =  𝒫  𝑉 | 
						
							| 21 | 16 20 | eqtrdi | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  dom   ⊥   =  𝒫  𝑉 ) | 
						
							| 22 | 6 21 | eleqtrd | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  𝑆  ∈  𝒫  𝑉 ) | 
						
							| 23 | 22 | elpwid | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 24 | 1 2 3 4 5 | ocvval | ⊢ ( 𝑆  ⊆  𝑉  →  (  ⊥  ‘ 𝑆 )  =  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑆 ( 𝑦  ,  𝑥 )  =   0  } ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( 𝑆  ⊆  𝑉  →  ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ↔  𝐴  ∈  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑆 ( 𝑦  ,  𝑥 )  =   0  } ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ,  𝑥 )  =  ( 𝐴  ,  𝑥 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑦  ,  𝑥 )  =   0   ↔  ( 𝐴  ,  𝑥 )  =   0  ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥  ∈  𝑆 ( 𝑦  ,  𝑥 )  =   0   ↔  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝐴  ∈  { 𝑦  ∈  𝑉  ∣  ∀ 𝑥  ∈  𝑆 ( 𝑦  ,  𝑥 )  =   0  }  ↔  ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) | 
						
							| 30 | 25 29 | bitrdi | ⊢ ( 𝑆  ⊆  𝑉  →  ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) ) | 
						
							| 31 | 23 30 | biadanii | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) ) | 
						
							| 32 |  | 3anass | ⊢ ( ( 𝑆  ⊆  𝑉  ∧  𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  )  ↔  ( 𝑆  ⊆  𝑉  ∧  ( 𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) ) | 
						
							| 33 | 31 32 | bitr4i | ⊢ ( 𝐴  ∈  (  ⊥  ‘ 𝑆 )  ↔  ( 𝑆  ⊆  𝑉  ∧  𝐴  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑆 ( 𝐴  ,  𝑥 )  =   0  ) ) |