| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 2 | 1 | recni | ⊢ e  ∈  ℂ | 
						
							| 3 |  | ene0 | ⊢ e  ≠  0 | 
						
							| 4 |  | ene1 | ⊢ e  ≠  1 | 
						
							| 5 |  | eldifpr | ⊢ ( e  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( e  ∈  ℂ  ∧  e  ≠  0  ∧  e  ≠  1 ) ) | 
						
							| 6 | 2 3 4 5 | mpbir3an | ⊢ e  ∈  ( ℂ  ∖  { 0 ,  1 } ) | 
						
							| 7 |  | logbval | ⊢ ( ( e  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝐴  ∈  ( ℂ  ∖  { 0 } ) )  →  ( e  logb  𝐴 )  =  ( ( log ‘ 𝐴 )  /  ( log ‘ e ) ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  →  ( e  logb  𝐴 )  =  ( ( log ‘ 𝐴 )  /  ( log ‘ e ) ) ) | 
						
							| 9 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 10 | 9 | oveq2i | ⊢ ( ( log ‘ 𝐴 )  /  ( log ‘ e ) )  =  ( ( log ‘ 𝐴 )  /  1 ) | 
						
							| 11 |  | eldifsn | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 12 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 13 | 11 12 | sylbi | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 14 | 13 | div1d | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  →  ( ( log ‘ 𝐴 )  /  1 )  =  ( log ‘ 𝐴 ) ) | 
						
							| 15 | 10 14 | eqtrid | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  →  ( ( log ‘ 𝐴 )  /  ( log ‘ e ) )  =  ( log ‘ 𝐴 ) ) | 
						
							| 16 | 8 15 | eqtrd | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  →  ( e  logb  𝐴 )  =  ( log ‘ 𝐴 ) ) |