Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 . (Contributed by NM, 15-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elom | ⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
2 | 1 | imbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( Lim 𝑥 → 𝑦 ∈ 𝑥 ) ↔ ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
3 | 2 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( Lim 𝑥 → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
4 | df-om | ⊢ ω = { 𝑦 ∈ On ∣ ∀ 𝑥 ( Lim 𝑥 → 𝑦 ∈ 𝑥 ) } | |
5 | 3 4 | elrab2 | ⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |