Metamath Proof Explorer


Theorem elom3

Description: A simplification of elom assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003)

Ref Expression
Assertion elom3 ( 𝐴 ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 elom ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) ) )
2 limom Lim ω
3 omex ω ∈ V
4 limeq ( 𝑥 = ω → ( Lim 𝑥 ↔ Lim ω ) )
5 eleq2 ( 𝑥 = ω → ( 𝐴𝑥𝐴 ∈ ω ) )
6 4 5 imbi12d ( 𝑥 = ω → ( ( Lim 𝑥𝐴𝑥 ) ↔ ( Lim ω → 𝐴 ∈ ω ) ) )
7 3 6 spcv ( ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) → ( Lim ω → 𝐴 ∈ ω ) )
8 2 7 mpi ( ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) → 𝐴 ∈ ω )
9 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
10 8 9 syl ( ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) → 𝐴 ∈ On )
11 10 pm4.71ri ( ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) ) )
12 1 11 bitr4i ( 𝐴 ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) )