Step |
Hyp |
Ref |
Expression |
1 |
|
elom |
⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
2 |
|
limom |
⊢ Lim ω |
3 |
|
omex |
⊢ ω ∈ V |
4 |
|
limeq |
⊢ ( 𝑥 = ω → ( Lim 𝑥 ↔ Lim ω ) ) |
5 |
|
eleq2 |
⊢ ( 𝑥 = ω → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ω ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑥 = ω → ( ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( Lim ω → 𝐴 ∈ ω ) ) ) |
7 |
3 6
|
spcv |
⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → ( Lim ω → 𝐴 ∈ ω ) ) |
8 |
2 7
|
mpi |
⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → 𝐴 ∈ ω ) |
9 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
10 |
8 9
|
syl |
⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) |
11 |
10
|
pm4.71ri |
⊢ ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
12 |
1 11
|
bitr4i |
⊢ ( 𝐴 ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) |