Metamath Proof Explorer


Theorem elon

Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994)

Ref Expression
Hypothesis elon.1 𝐴 ∈ V
Assertion elon ( 𝐴 ∈ On ↔ Ord 𝐴 )

Proof

Step Hyp Ref Expression
1 elon.1 𝐴 ∈ V
2 elong ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )
3 1 2 ax-mp ( 𝐴 ∈ On ↔ Ord 𝐴 )