Metamath Proof Explorer


Theorem elon2

Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004)

Ref Expression
Assertion elon2 ( 𝐴 ∈ On ↔ ( Ord 𝐴𝐴 ∈ V ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ On → 𝐴 ∈ V )
2 elong ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )
3 1 2 biadanii ( 𝐴 ∈ On ↔ ( 𝐴 ∈ V ∧ Ord 𝐴 ) )
4 3 biancomi ( 𝐴 ∈ On ↔ ( Ord 𝐴𝐴 ∈ V ) )