Metamath Proof Explorer


Theorem elong

Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994)

Ref Expression
Assertion elong ( 𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordeq ( 𝑥 = 𝐴 → ( Ord 𝑥 ↔ Ord 𝐴 ) )
2 df-on On = { 𝑥 ∣ Ord 𝑥 }
3 1 2 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )