Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elong | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq | ⊢ ( 𝑥 = 𝐴 → ( Ord 𝑥 ↔ Ord 𝐴 ) ) | |
2 | df-on | ⊢ On = { 𝑥 ∣ Ord 𝑥 } | |
3 | 1 2 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) |