Metamath Proof Explorer


Theorem elop

Description: Characterization of the elements of an ordered pair. Exercise 3 of TakeutiZaring p. 15. (Contributed by NM, 15-Jul-1993) (Revised by Mario Carneiro, 26-Apr-2015) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses elop.1 𝐵 ∈ V
elop.2 𝐶 ∈ V
Assertion elop ( 𝐴 ∈ ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) )

Proof

Step Hyp Ref Expression
1 elop.1 𝐵 ∈ V
2 elop.2 𝐶 ∈ V
3 elopg ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) )
4 1 2 3 mp2an ( 𝐴 ∈ ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) )