Metamath Proof Explorer


Theorem elopabr

Description: Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabr ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } → 𝐴𝑅 )

Proof

Step Hyp Ref Expression
1 elopab ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) )
2 df-br ( 𝑥 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
3 2 biimpi ( 𝑥 𝑅 𝑦 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
4 eleq1 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
5 3 4 syl5ibr ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑥 𝑅 𝑦𝐴𝑅 ) )
6 5 imp ( ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) → 𝐴𝑅 )
7 6 exlimivv ( ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) → 𝐴𝑅 )
8 1 7 sylbi ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } → 𝐴𝑅 )