Metamath Proof Explorer


Theorem elopabr

Description: Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021) (Proof shortened by SN, 11-Dec-2024)

Ref Expression
Assertion elopabr ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } → 𝐴𝑅 )

Proof

Step Hyp Ref Expression
1 opabss { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ⊆ 𝑅
2 1 sseli ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } → 𝐴𝑅 )