Metamath Proof Explorer


Theorem elopabran

Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabran ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } → 𝐴𝑅 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝑥 𝑅 𝑦 )
2 1 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }
3 opabss { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ⊆ 𝑅
4 2 3 sstri { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ⊆ 𝑅
5 4 sseli ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } → 𝐴𝑅 )