Metamath Proof Explorer


Theorem elopabran

Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabran ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } → 𝐴𝑅 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑥 𝑅 𝑦𝜓 ) → 𝑥 𝑅 𝑦 )
2 1 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 }
3 2 sseli ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } → 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } )
4 elopabr ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } → 𝐴𝑅 )
5 3 4 syl ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } → 𝐴𝑅 )