Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elopabran | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } → 𝐴 ∈ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) → 𝑥 𝑅 𝑦 ) | |
2 | 1 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } |
3 | 2 | sseli | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } → 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |
4 | elopabr | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } → 𝐴 ∈ 𝑅 ) | |
5 | 3 4 | syl | ⊢ ( 𝐴 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } → 𝐴 ∈ 𝑅 ) |