Metamath Proof Explorer


Theorem elopabw

Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab with a sethood antecedent, avoiding ax-sep , ax-nul , and ax-pr . Originally a subproof of elopab . (Contributed by SN, 11-Dec-2024)

Ref Expression
Assertion elopabw ( 𝐴𝑉 → ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑧 = 𝐴 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ) )
2 1 anbi1d ( 𝑧 = 𝐴 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )
3 2 2exbidv ( 𝑧 = 𝐴 → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )
4 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) }
5 3 4 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ) )